MTH 605: Topology I Homework III

(Due 09/09)

- 1. A space X is *contractible* if the identity map on X is nullhomotopic.
 - (a) Show that \mathbb{R}^n is contractible.
 - (b) Show that any contractible space is path connected.
- 2. Let x_0 and x_1 be points in a path-connected space X. Show that $\pi_1(X, x_0)$ is abelian if and only if for every pair f and g of paths from x_0 to x_1 , we have $\hat{f} = \hat{g}$.
- 3. For $A \subset X$, a continuous map $r: X \to A$ such that $r|_A = i_A$ is called a *retraction* of X into A. If $a \in A$, show that $r_*: \pi_1(X, a) \to \pi_1(A, a)$ is surjective.
- 4. Let A be a subspace of \mathbb{R}^n , and let $h: (A, a) \to (Y, y)$. Show that if h is extendable to a continuous map of \mathbb{R}^n into Y, then h_* is trivial.
- 5. Let $p: \widetilde{X} \to X$ be continuous and surjective. Suppose that U is open set in X that is evenly covered by p. Then show that if U is connected, then the partition of $p^{-1}(U)$ to slices is unique.
- 6. Let $p: \widetilde{X} \to X$ be a covering map, and let X be connected. Show that if $p^{-1}(x_0)$ has k elements for some $x_0 \in X$, then $p^{-1}(x)$ has k elements for every $x \in X$. In such a case, \widetilde{X} is an k-fold covering space of X.
- 7. Show that $p_n : S^1(\subset \mathbb{C}) \to S^1(\subset \mathbb{C})$ given by $p_n(z) = z^n$ is an *n*-fold covering space for every positive integer *n*.
- 8. Describe all k-fold covering spaces of the torus $S^1 \times S^1$.